Global Geostationary Network and Fire Products

Louis Giglio, Martin Wooster
Elaine Prins, Christopher Schmidt, Wilfrid Schroeder,
Ivan Csiszar

GOFC-GOLD Fire-IT Meeting
15-18 April 2013
<table>
<thead>
<tr>
<th>Satellite</th>
<th>Active Fire Spectral Bands</th>
<th>Resolution IGFOV (km)</th>
<th>SSR (km)</th>
<th>Full Disk Coverage</th>
<th>3.9 µm Saturation Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOES-E/-W Imager (75ºW / 135ºW)</td>
<td>1 visible 3.9 and 10.7 µm</td>
<td>1.0</td>
<td>0.57</td>
<td>3 hours (30 min NHE and SHE)</td>
<td>~337-340 K (G-15)</td>
</tr>
<tr>
<td>GOES-12 Imager (South America) (60ºW)</td>
<td>1 visible 3.9 and 10.7 µm</td>
<td>1.0</td>
<td>0.57</td>
<td>3 hours (Full Disk) 15 min (SA)</td>
<td>&gt;337 K (G-12)</td>
</tr>
<tr>
<td>Met-10 SEVIRI (0º)</td>
<td>1 HRV 3.9 and 10.7 µm</td>
<td>1.6</td>
<td>1.0</td>
<td>15 minutes</td>
<td>~335 K</td>
</tr>
<tr>
<td>FY-2D/2E SVISSR (86ºE / 105ºE)</td>
<td>1 visible, 3.75 and 10.8 µm</td>
<td>1.25</td>
<td>1.0</td>
<td>1 hour</td>
<td>~320 K</td>
</tr>
<tr>
<td>MTSAT-2 Imager (HRIT) (145ºE) Operational (2010)</td>
<td>1 visible 3.7 and 10.8 µm</td>
<td>1.0</td>
<td>1.0</td>
<td>~30 minutes</td>
<td>~330 K</td>
</tr>
<tr>
<td>GOMS Elektro-L N1 MSU-GS (76ºE) (2011)</td>
<td>3 visible 3.75 and 10.7 µm</td>
<td>1.0 km</td>
<td>1.0 km</td>
<td>30 minutes</td>
<td>TBD</td>
</tr>
<tr>
<td>GOMS Elektro-L N2 MSU-GS (76ºE) (12/2013)</td>
<td>1 visible 3.9 and 10.7 µm</td>
<td>1.0 km</td>
<td>1.0 km</td>
<td>3 hours</td>
<td>~350 K</td>
</tr>
<tr>
<td>COMS MI (128ºE)</td>
<td>1 visible 3.9 and 10.7 µm</td>
<td>1.0 km</td>
<td>1.0 km</td>
<td>~30 minutes</td>
<td>TBD</td>
</tr>
</tbody>
</table>
WFABBA Fire Monitoring Around the Globe

GOES-11 (West)
- Schedule: Full disk (NHE+SH) - 30 minute CONUS - 15 minute
- Western U.S., Alaska, Canada, South America on limb
- Biome block-out limits fire monitoring in arid west
- Saturation minimal

GOES-13 (East)
- Schedule: Full disk (NHE+SH) - 30 minute CONUS - 15 minute
- Good coverage of South America which dominates fire signal
- Although number of detected fires is smaller than GOES-12, year to year variability is similar
- Saturation minimal

GOES-12 (South America)
- Schedule: Full disk - 3 hour
- Excellent spatial and temporal coverage of South America allows for nearly twice as many fire detects compared with GOES-E
- Higher # of cloud contaminated and low possibility fires
- Saturation minimal

Meteosat-9
- Schedule: Full disk- 15 minute
- Excellent spatial and temporal coverage of Africa
- Biome block-out limits fire monitoring in Africa and Middle East
- The number of low possibility fires is high especially over South America
- Saturation slightly higher than GOES series

MTSAT-2
- Schedule: Full disk- 1 hour
- Excellent spatial coverage of Indonesia
- Fire monitoring limited by low saturation in the 3.9 µm band
- Low possibility fires dominate the fire signature
- Many saturated fire pixels

The global WFABBA is operational at NOAA/NESDIS with fire product text file download available in near-real time. Fire mask imagery is available online at http://wfabba.ssec.wisc.edu.
Example of Improved Geostationary Fire Monitoring in SE Asia
With the Korean COMS

Saturation in the short-wave IR window

MTSAT-2

COMS

4 micron data
Date: 22 August 2012
Time: 02:32 UTC

Saturation: ~320K

Saturated Values

4 micron data
Date: 22 August 2012
Time: 02:15 UTC

Saturation: >350K

Adaptation of WF_ABBA for COMS nearly complete
Observations of Fires in Borneo Using MTSAT-2 and COMS

Dark hot spots indicate active fires in COMS and MTSAT-2 4-micron imagery. Fire signatures in the COMS data are more readily distinguished from the background conditions allowing for enhanced detection/characterization.
COMS Captures Diurnal Variability in Fire Activity in Borneo and Sumatra

August 16, 2012  03:15 – 07:15 UTC
Operational SEVIRI FRP Product

- Available from EUMETSAT Land Surface Analysis Satellite Application Facility (LSA SAF) using KCL algs.

- Active Fire Detection
- FRP Assessment
- Uncertainty Estimates

Available free via FTP or EUMETCast for last few years:

http://landsaf.meteo.pt/

- FRP Pixel Product (native spatial/temporal resolution) – available within 30 mins
- FRP Gridded product - inc. adjustments for “small fires” and “clouds” also available.
Example LSA SAF FRP Data


SEVIRI FRP Time-series (2004)
GOES FRP Product
(forthcoming from the LSA SAF)

- Being Migrated to the LSA SAF Processing chain this year (2013)
- Currently available on request in NRT from King’s College London
Near Term and Next Generation
Global Geostationary Active Fire Monitoring Capabilities

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Launch</th>
<th>Active Fire Spectral Bands</th>
<th>Resolution IGFOV (km)</th>
<th>Full Disk Coverage</th>
<th>3.9 ( \mu \text{m} ) Saturation Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>India INSAT-3D (82°E, Prime: 74°E)</td>
<td>2013/2014</td>
<td>1 vis, 1.6 ( \mu \text{m} ) 3.9 and 10.8 ( \mu \text{m} )</td>
<td>1.0 4.0</td>
<td>30 minutes</td>
<td>TBD</td>
</tr>
<tr>
<td>JMA Himawari-8 AHI (140°E)</td>
<td>2014</td>
<td>1 visible 5 visible/NIR 3.9,10.4,11.2 ( \mu \text{m} )</td>
<td>0.5 1.0 - 2.0 2.0</td>
<td>10 minutes</td>
<td>~400 K (?)</td>
</tr>
<tr>
<td>USA GOES-R ABI (75°W / 137°W)</td>
<td>2015</td>
<td>1 visible 5 visible/NIR 3.9,10.4,11.2 ( \mu \text{m} )</td>
<td>0.5 1.0 – 2.0 2.0</td>
<td>15 minutes</td>
<td>~400 K</td>
</tr>
<tr>
<td>CMA FY-4A AGRI (86.5°E)</td>
<td>2015</td>
<td>1 visible 5 visible/NIR 3.9,10.4,11.2 ( \mu \text{m} )</td>
<td>0.5 – 1.0 1.0 – 2.0, 4.0 2.0 &amp; 4.0</td>
<td>15 minutes</td>
<td>?</td>
</tr>
<tr>
<td>European MTG-I1 FCI (9.5 °E, 0°)</td>
<td>&gt;2018</td>
<td>2 visible (RSS*) 8 visible/NIR 3.8 and 10.5 ( \mu \text{m} )</td>
<td>0.5 1.0 1.0 (RSS-3.8( \mu \text{m} )) 2.0 for both</td>
<td>10 minutes</td>
<td>~450 K (?)</td>
</tr>
<tr>
<td>KMA GEO-KOMPSAT-2A AMI (128.2 or 116.2 °E)</td>
<td>&gt;2017</td>
<td>1 visible 5 visible/NIR 3.9,10.4,11.2 ( \mu \text{m} )</td>
<td>0.5 1.0 – 2.0 2.0</td>
<td>10 minutes</td>
<td>~400 K (?)</td>
</tr>
<tr>
<td>Russia Elektro-M MSU-GSM (76°E)  (considered)</td>
<td>2017</td>
<td>~20 channels from 0.38-14.25 ( \mu \text{m} ) (??)</td>
<td>0.5-1.0 km (VNIR/SWIR) 1.0-2.0 km (IR)</td>
<td>10 minutes</td>
<td>TBD</td>
</tr>
</tbody>
</table>

*MTG-I1 RSS- Regional Rapid Scan (2.5 minutes over Europe, .25 full disk)*
GOES-R Advanced Baseline Imager Bands and how they are used for Fire Detection and Characterization Algorithm (FDCA)

<table>
<thead>
<tr>
<th>Future GOES Imager (ABI) Band</th>
<th>Nominal Wavelength Range (μm)</th>
<th>Nominal Central Wavelength (μm)</th>
<th>Nominal Central Wavenumber (cm⁻¹)</th>
<th>Nominal sub-satellite IGFOV (km)</th>
<th>Required/optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.45-0.49</td>
<td>0.47</td>
<td>21277</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.59-0.69</td>
<td>0.64</td>
<td>15625</td>
<td>0.5</td>
<td>Optional, spec can be met without</td>
</tr>
<tr>
<td>3</td>
<td>0.846-0.885</td>
<td>0.865</td>
<td>11561</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.371-1.386</td>
<td>1.378</td>
<td>7257</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.58-1.64</td>
<td>1.61</td>
<td>6211</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.225 - 2.275</td>
<td>2.25</td>
<td>4444</td>
<td>2</td>
<td>Future research</td>
</tr>
<tr>
<td>7</td>
<td>3.80-4.00</td>
<td>3.90</td>
<td>2564</td>
<td>2</td>
<td>Required</td>
</tr>
<tr>
<td>8</td>
<td>5.77-6.6</td>
<td>6.19</td>
<td>1616</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.75-7.15</td>
<td>6.95</td>
<td>1439</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7.24-7.44</td>
<td>7.34</td>
<td>1362</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8.3-8.7</td>
<td>8.5</td>
<td>1176</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.42-9.8</td>
<td>9.61</td>
<td>1041</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10.1-10.6</td>
<td>10.35</td>
<td>966</td>
<td>2</td>
<td>Optional</td>
</tr>
<tr>
<td>14</td>
<td>10.8-11.6</td>
<td>11.2</td>
<td>893</td>
<td>2</td>
<td>Required</td>
</tr>
<tr>
<td>15</td>
<td>11.8-12.8</td>
<td>12.3</td>
<td>813</td>
<td>2</td>
<td>Required</td>
</tr>
<tr>
<td>16</td>
<td>13.0-13.6</td>
<td>13.3</td>
<td>752</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Legend:**
- **Yellow:** Current Input
- **Orange:** Expected Added Input
- **Teal:** Possible Added Input

11
The detection threshold in ABI simulated data

The charts depict the GOES-R Fire Detection Algorithm fire detection and classification as a function of the model simulated ABI fire size and fire temperature. Fire detection case studies of simulated ABI data (developed at CIRA). The WFABBA is quite successful detecting fires with FRP > 75 MW (purple curved line, gray curved lines are on a log scale of MW).
FUTURE EUROPEAN GEOSTATIONARY MISSION
The payload complement of the MTG-I satellite consists of:

- the Flexible Combined Imager (FCI)
- the Lightning Imager (LI)
- the Data Collection System (DCS) and Search and Rescue (GEOSAR)

The payload complement of the MTG-S satellite consists of:

- the Infrared Sounder (IRS)
- the Ultra-violet, Visible and Near Infrared Sounder (UVN). UVN is provided as GMES Sentinel 4 Instruments

Meteosat Third Generation ~ 2017/18
MTG - Flexible Combined (FC) Imager

- The Flexible Combined Imager supports the FDHSI and HRFI missions.
- Basic repeat cycle of 10 min Full Disk coverage.
- The Local Area Coverage zone can be positioned anywhere over the Full Disk Coverage. Possible repeat cycle of 10/2, 10/3 or 10/4 minutes, with the coverage reduced proportionally.

Challenges compared to MSG:
- improved Spatial Resolution (0.5 - 2 km)
- faster basic repeat cycle (brc = 10 min)
- better spectral coverage (more channels and with low gain “fire” channel)
- improved spectral accuracy
- improved radiometric accuracy

Should allow improved “geostationary fire product” – KCL & EUMETSAT LSA SAF to work on these In the coming few years.
General Overview of Next Generation Global Geostationary Fire Monitoring

- Many of the new geostationary instruments include mandates for fire detection.

- Although these instruments are similar in many ways, pre-processing and saturation limits may not be the same. One of the biggest issues is the lack of information regarding sub-pixel detector saturation.

- Rapidly growing geo sensor & fire product network demands increased coordination between operational data producers, fire product development and implementation teams, and the user community.

- Existing cal/val plans included in many of the upcoming platforms need systematic validation efforts to understand cross platform differences and coordinated validation activities with CEOS LPV.

- Success requires support by operational agencies to sustain the global geostationary fire monitoring network and produce standardized long-term data records and fire inventories of known accuracy.
Geostationary Fire Product Validation

- Few detailed validation studies using GOES Imager (WF_ABBA) data
  - Landsat-class reference data freely available for fire detection validation ✔
  - Some airborne reference data available for fire retrieval validation ✔
  - GOES Imager navigation errors make data co-location difficult ✗

- Few satellite fire product inter-comparison studies
  - Ex.: FRP/FRE GOES × MODIS & SEVIRI × MODIS ✔
  - Limited information on fire retrieval accuracy ✗

- Few intensive fire sampling studies
  - Limited information on biome-specific as well as inter-satellite fire product performance ✗
Future Geo Validation Options

- Expand on the use of freely-available 30 m Landsat-class sensor reference data to establish common data base for in-depth assessment of sensor-specific detection performance and to support product inter-comparison
  - *Landsat-8 (✔), Sentinel-2a (~2014), 2b (2015?)*

- Other potential candidates providing moderate resolution reference fire data:
  - *DLR TET-1 (✔) and BIROS (2014?) ➔ 370 m fire detection and retrieval, non-public/on-demand only*
  - *SNPP/VIIRS I-band ➔ 375 m fire detection only (✔)*

- Field campaigns using manned/unmanned (UAV) airborne active fire imaging and ground sampling
  - *Community coordination required to leverage off funding and reduce costs*
  - *Few airborne sensors providing quality reference data (✔)*
Conclusions

• Global network of geostationary fire observing systems now a reality
  • Will continue to expand & improve over the next few years
    • Better sensors plus enhanced coverage

• Community coordination is a top priority
  • Geo-focused workshop is overdue
  • New products must be properly validated/assessed and inter-compared
    • Product data and documentation must be readily accessible
    • Must take advantage of array of reference data sets
    • Improve communication/coordination among groups interested/involved in field campaigns
    • Must engage user community and facilitate feedback

• Integration with existing and new polar orbiter products (MODIS, VIIRS, Sentinel-3) must be expanded and improved
  • Improve characterization of sensor view angle, and biome-related geostationary fire product dependencies
Backup Slides
The Global WF_ABBA (Version 6.5.007)

- Opaque cloud product indicating where fire detection is not possible.
- Fire Radiative Power and Dozier instantaneous estimates of fire size and temperature.
- Meta data on processing regions; opaque cloud coverage; block-out zones due to solar reflectance, clouds, extreme view angles, biome type, etc.
- Fire/meta data mask: view real-time imagery online at http://wfabba.ssec.wisc.edu
WFABBA and GOES-R

• GOES-R is the next generation GOES
• The Advanced Baseline Imager (ABI) provides 2 km resolution and a full disk image every 15 minutes, CONUS every 5
• The instrument’s specifications were designed with fires in mind, specifically for the “fire bands”; saturation for 4 μm band is 400 K
• Fire detection and characterization will be a “day 1” product
• Development has been underway since ~2004
• Development of proxy data has been a challenge
• ABI data will be remapped to a fixed grid
• Known as the “Fire Detection and Characterization Algorithm” (FDCA) in the GOES-R development world
Fire detection and characterization algorithm properties

- Required refresh rate: 5 minute CONUS, 15 minute full disk
- Resolution: 2 km
- Coverage: CONUS, full disk (“mesoscale”, aka 1 minute/30 second frequency coverage *not* required)
- Product outputs (same as WFABBA):
  - Fire location
  - Fire instantaneous size, temperature, and radiative power
  - Metadata mask including information about opaque clouds, solar reflection block-out zones, unusable ecosystem types.
Proxy data

• Developing proxy data has been difficult
• Two approaches:
  – Remap higher resolution data (such as from MODIS) to ABI projection using estimated point spread functions
  – Create data in models (provided by proxy data team from CIRA)
Proxy Data

The ABI from MODIS simulated data for 7 September 2004 involved a remapping using a simulated point spread function. To the right, MODIS fires are blue and ABI simulated fires are red. The differences are in part attributable to that remapping, but also to differences in how the algorithms determine fires.
Proxy Data from MODIS

3.9 μm channel

Fire mask

Simulated ABI from MODIS imagery

Mask Legend
- Processed Fire
- Saturated Fire
- Cloudy Fire
- High Possibility Fire
- Medium Possibility Fire
- Biome Block-out Zone
- Processed Region

2007 Oct. Southern California fire outbreak simulation
ABIs proxy examples from models

Example case:

- Model-derived courtesy CIRA
- 5 minute, 2 km imagery
- Fires initialized from GOES-12 WFABBA fire product
- “Alphablended” imagery – ecosystem map used to represent surface, clouds appear in shades of white, fires are predominantly red (processed) in this case
Proxy Data from a model

3.9 µm channel

Fire mask

Simulated ABI from CIRA model

Mask Legend
- Processed Fire
- Saturated Fire
- Cloudy Fire
- High Possibility Fire
- Medium Possibility Fire
- Biome Block-out Zone
- Processed Region

GOES-11

2007 Oct. Southern California fire outbreak simulation
ABI proxy examples from models

Example case:

• Model-derived courtesy CIRA
• 5 minute, 2 km imagery
• Fires initialized from GOES-12 WFABBA fire product
• Fires are red (processed) and yellow (saturated)
• Gray region is the solar blockout zone, consisting of two regions of high solar reflection
## Model data validation

<table>
<thead>
<tr>
<th>CIRA Model Simulated Case Studies^</th>
<th>CIRA Truth</th>
<th>ABI WFABBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total # of fire clusters*</td>
<td>Total # of ABI fire pixels*</td>
</tr>
<tr>
<td>Kansas CFNOCLD</td>
<td>9720</td>
<td>63288</td>
</tr>
<tr>
<td>Kansas VFNOCLD</td>
<td>5723</td>
<td>36919</td>
</tr>
<tr>
<td>Kansas CFCLD</td>
<td>9140</td>
<td>56553</td>
</tr>
<tr>
<td>Cent. Amer. VFCLD</td>
<td>849</td>
<td>2859</td>
</tr>
<tr>
<td>Oct 23, 2007 California VFCLD</td>
<td>990</td>
<td>4710</td>
</tr>
<tr>
<td>Oct, 26 2007 California VFCLD</td>
<td>120</td>
<td>522</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CFNOCLD</th>
<th>Constant Fire No Cloud</th>
<th>^ Limit to ~ 400K minimum fire temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFNOCLD</td>
<td>Variable Fire No Cloud</td>
<td></td>
</tr>
<tr>
<td>CFCLD</td>
<td>Constant Fire with Cloud</td>
<td>* In clear sky regions, eliminating block-out zones</td>
</tr>
<tr>
<td>VFCLD</td>
<td>Variable Fire with Cloud</td>
<td></td>
</tr>
</tbody>
</table>

30
Example of Improved Geostationary Fire Monitoring in SE Asia
With the Korean COMS

- COMS centrally located to observe fires in Australia, Eastern Asia and the Maritime Continent (SE Asia)
- High saturation temperature (>350K) in the short-wave IR window allows for unique and improved diurnal fire monitoring with COMS
- Initial observations indicate that pre-processing of COMS data results in less smearing of the fire signal along the scan line which may allow for improved geostationary fire detection and characterization in SE Asia and Australia.
- COMS high temporal monitoring over Indonesia (15 minutes) allows for monitoring short-lived agricultural fires.
- Initial adaptation of the WF_ABBA for COMS is nearly complete.
COMS and MTSAT-2: Example of short-wave IR band over Northern Australia

Date: 22 August 2012

Variable field with fire signatures

Flat gray field caused by saturation
Observations of Fires in Northern Australia Using COMS and MTSAT-2

The view angle for COMS and MTSAT-2 is similar for this region (slightly larger for MTSAT-2) in Northern Australia. Pre-processing of COMS data results in reduced smearing of the fire signal along the scan line allowing for improved fire detection and characterization.