Server-side maps processing for the Air Quality with the WCPS Standard

Dr. Piero Campalani

Large-Scale Scientific Information Systems (L-SIS) group
Jacobs University Bremen (DE)
<p.campalani@jacobs-university.de>
Credits

- The European Union research fundings
- MEEO Srl for data servers and use-cases
- EarthServer project partners for feedback and for helping improving our service.
- My team at the L-SIS research group
PREFACE: purpose of our investigations

- Evaluate the processing capabilities of the OGC WCPS processing query language on time series of EO image products (~TB).
- Towards a different paradigm of geospatial web services: away from simple ROI data visualization.
- Demonstrate and benchmark the designed **use cases** on our WCPS service implementation.
Outline

- CONTEXT
 - rasdaman and the EarthServer initiative
 - Multi-sensor Evolution Analysis (MEA) platform

- OGC OPEN STANDARDS
 - Web Coverage Service (WCS)
 - WCS processing extension (WCPS)

- RATIONALE & USE CASES
 - Temporal analysis
 - Time-series cross-comparison
 - Spatio-temporal data merging

- CONCLUSIONS & OUTLOOK
context
rasdaman: Agile Array Analytics

- "raster data manager": SQL + tiled n-D array objects

```sql
SELECT img.green[x0:x1,y0:y1] > 130
FROM LandsatArchive AS img
WHERE avg_cells(img.nir) < 17
```

- Scalable parallel "tile streaming" architecture.
- In operational use since many years.
- OGC WCS Core Reference Implementation.
History of Array DBMSs

- Rasdaman
- Grid DataBlade
- TerraLib
- PostGIS Raster
- Oracle georaster
- ESRI ArcSDE
- SciQL
- Spatialite
- SciDB

Picdms

EXTRA/EXCESS

Air Quality in Asia Workshop | Hanoi (VN) | P. Campalani
EarthServer: **Big Earth Data Analytics**

- **Scalable On-Demand Processing for the Earth Sciences**
 - EU FP7-INFRA, Sep 2011 – Aug 2014, ~6 mEUR

- **Platform:** pioneer Array Database technology, **rasdaman**
 - Integrated filtering & processing on metadata, regular/irregular grids, point clouds, ...

- **11 partners (3 SMEs):**

 - **Cryospherics Science**
 - Landcover mapping
 - **Airborne Science**
 - High-altitude long-endurance drones
 - **Atmospheric Science**
 - Climate variables
 - **Geology**
 - Geological models
 - **Oceanography**
 - Marine model runs + in-situ data
 - **Planetary Science**
 - Mars geology

Air Quality in Asia Workshop | **Hanoi (VN)** | **P. Campalani**
RTD Activity: Overview

- Big Geo Data engine development
 - Based on rasdaman Array Database
 - strictly open standards (OGC WCS, WCPS, WMS)
- Regular & irregular grids, point clouds, meshes
- Data/metadata search integration (xWCPS)
- Scalable 2D/3D client toolkits & GUIs
Multi-sensor Evolution Analysis (MEA)

Temporal analysis of atmospheric profiles, aerosols, cloud properties, + other EO products.
OGC open standards
OGC Web Coverage Service: Big Picture

Diagram showing the logical view of the WCS Suite with various components such as GML, SWE Common, OWS Common, WCS Core, and different processing services including WCS-T, GET-KVP, POST-XML, SOAP, REST, EO-WCS, and MetOcean-WCS.
OGC Web Coverage Processing Service

- OGC Web Coverage Processing Service (WCPS) - adopted 2008. High-level grid coverage filtering & processing language:

- "From MODIS scenes M1, M2, M3: difference between red & nir, as JPEG2000, but only those where nir exceeds 127 somewhere."

```plaintext
for $c in ( M1, M2, M3 )
where some( $c.nir > 127 )
return encode( $c.red - $c.nir, "image/jp2"
```
rationale & use cases
Rationale

- Group time-series of rectified EO products into a single geospatial feature: a multi-dimensional **coverage**.
- Combine **temporal Coordinate Reference Systems** (CRSs) with geodetic one to create a single spatio-temporal geometric space.
- **WCPS linear algebra** to provide some first tools of preliminary data analysis for scientists: scaling and condensing operators to enable server-side NODATA-aware grids spatial and temporal co-location/aggregation on datasets with:
 - Different **temporal resolutions** and support
 - Different **spatial resolution** and shifted pixel-origins
 - Either regular or irregular **frequency**
Single product temporal analysis (I)

- **Retrieve time profiles (histories):**
 - which is the value in time over this point location?
 - What is the maxima over this ROI in time?
 - What is the history of weekly averages of this variable?

```sql
#SINGLE_PXH
coverage single_pixel_history
over $t t ( imagecrsdomain(c, t) )
values c[#ROI, t:"CRS:1"($t)]

#MERGED_PXH
coverage averaged_pixel_history
over $t t ( imagecrsdomain(c, t) )
values avg(c[#ROI, t:"CRS:1"($t)])

#AGGREGATED_PXH
coverage aggregated_pixel_history
over $t t
( 0, (count(c[#SLICE(Lat,Long)])/#AGG_DAYS)-1 )
values avg(c[#SLICE(Lat,Long),
  t:"CRS:1"($t:$t+(#AGG_DAYS-1)))]
```
Single product temporal analysis (II)

- **Simple statistics** over time:
 - what are the average aerosols concentrations of last month over Hanoi?
 - How many times pollution level has exceeded a threshold? PDF?
 - Where are there highest differences in this product on Tuesday and Wednesday?

```plaintext
#AVG
add((c[#ROI, t("#DATE")]] = #NIL) * (0) +
    (c[#ROI, t("#DATE")]] != #NIL) *
    (c[#ROI, t("#DATE")]])
/ count(c[#ROI, t("#DATE")]] != #NIL)

#STDEV
sqrt(add(
pow(
    (c[#ROI, t("#DATE")]] = #NIL) * (0) +
    (c[#ROI, t("#DATE")]] != #NIL) *
    (c[#ROI, t("#DATE")]] - #AVG(c)), 2))
/ (count(c[#ROI, t("#DATE")]] != #NIL) - 1))
```
Single product temporal analysis (III)

- What is the black & white 95%-confidence PM exceedance maps from statistical forecasts models for tomorrow?

```python
#95%EEXCEEDANCE
((c[#ROI, t("#DATE")]).prediction +
(c[#ROI, t("#DATE")]).variance * 1.644854) > #HI_THRESHOLD
```

- What is the air quality traffic-light map on a certain date?

```python
#TRAFFIC_LIGHT
{ red: (char)( c >= LO_THRESHOLD ) * 255;
green: (char)( c < HI_THRESHOLD ) * 255;
blue: (char)( c * 0 )
{ [ #ROI, t("#DATE") ]
```
Time-series cross-comparison (I)

- Retrieve NODATA-aware bivariate statistics
 - What is the covariance of PM values and wind speeds on a near-by location?
 - What is the time profile of linear correlation between two atmospheric variables?

- Time-space delta \triangle maps and profiles:
 - what is the maximum difference in my ROI between weekly data averages?

```sql
#MERGED_PXH
coverage delta_merged_pixel_history
over $t t ( imagecrsdomain(c1, t) )
values avg(c1[#ROI, t:"CRS:1"($t)]) -
avg(c2[#ROI, t:"CRS:1"($t:$t+($M-1))])

#AGGREGATED_\triangle\_MAP
scale(c1[#ROI, t("2014-01-01")],
      imagecrsdomain(c2[#ROI, t("2014-01-01")])) -
coverage delta_pixel_history
over $x x ( imagecrsdomain(
      c2[#ROI, t("2014-01-01")], Long ) ),
$y y ( imagecrsdomain(
      c2[#ROI, t("2014-01-01")], Lat ) )
values avg( c2[Lat($y), Long($x),
      t("2014-01-01T00":"2014-01-01T23:59")])

#1:1_\triangle\_MAP
scale(c1[#ROI, t("2014-01-01")],
      imagecrsdomain(
      c1[#ROI, t("2014-01-01")]) -
      c2[#ROI, t("2014-01-01T12:00")]
)
Time-series cross-comparison (II)

- Single predictor **linear model** computations
  - What is the beta coefficient of my possible predictor?
  - What are the residuals of an hypothetical linear model applied on this day?

```plaintext
#LM_RESIDUALS
\[
c1[#ROI, t("#DATE")] - c2[#ROI, t("#DATE")]) \ast (\text{add}(c1[#ROI, t("#DATE")]) \ast \\
\text{add}(c2[#ROI, t("#DATE")])) / \\
\text{add}(\text{pow}(c2[#ROI, t("#DATE")], 2)))
\]
```
Spatio-temporal data merging

- Mere averaging: what is the average spatially-enhanced map of AOT obtained by merging MODIS and MISR datasets collected on the previous 50 days?

- What are the maxima of daily averages from N different transport models?

- Exploiting statistical estimation error information: what is the MLE-based fusion map of these 3 different kriging models?
conclusions & outlook
WCPS for the Air Quality

- The WCPS query language allows for **array analytics** to be requested directly to your data server.
- WCPS can enhance the capabilities of a web service for **value-adders** handling remote-sensing imagery data.
- WCPS is an OGC **open standard**.

**Want to try it out?**
- Contact us: [http://rasdaman.org/wiki/MailingLists](http://rasdaman.org/wiki/MailingLists)
- Check out our **rasdaman** tutorial: [http://rasdaman.org/wiki/Workshops/BigDataRasdamanApproach](http://rasdaman.org/wiki/Workshops/BigDataRasdamanApproach)
WCPS capabilities demonstration app

- Setup OGC WCS endpoint of 1 year EO gridded rectified datasets of *Aerosol Optical Thickness (AOT)* @ 550nm from different sources:
  - Level-3 24H NASA MOD08 product, 1×1 degrees (+ NODATA)
  - Level-3 24H ESA CCI AOT product, 1×1 degrees (MEAN/STDEV)(+ NODATA)
  - 3H ECMWF MACC Reanalysis AOT product, 1.125×1.125 degrees

- Deployment of WCPS queries for:
  - Single-product data analysis and statistics retrieval
  - Multiple-product data cross-comparison and merging

- Project site: [http://worldwind.flanche.net/](http://worldwind.flanche.net/)
Current limitations

- Only grids which have been pre-aligned to a uniform grid within the coordinate reference system are supported: Level-1 or 2 satellite datasets are left out.

- BBOX-subsetting is the only way to select regions of interest via WCS/WCPS: polygonal clipping – highly common in GIS applications – needs to be designed.

- No CRS reprojection make it harder to combine and cross-compare separate products.
- Extend support to **non-uniform** ("warped") grids for hosting a wider range of EO data;
- Finalize standardization of XML definition for **time coordinate reference systems** at OGC;
- Extend WCS and WCPS to define **intersection operation(s)** of grids with general geometries (lines, polygons, etc.);
- Proper handling of **data uncertainty**;
- More powerful processing with User-Defined Functions and **R/Python bindings**.
Links

- Big Earth Data Standards: rasdaman demonstrations
  http://www.earthlook.org/

- The *EarthServer* initiative
  http://earthserver.eu/

- The open source rasdaman project
  http://rasdaman.org/
  http://www.ohloh.net/p/rasdaman

- MEA platform
  http://earthserver.services.meeo.it/

- OGC coverage service standards
  http://www.opengeospatial.org/standards/wcs
  http://www.opengeospatial.org/standards/wcps