Utilization of Satellite Remote Sensing Data in Supporting Wildfire Early Warning and Monitoring in Indonesia

Orbita Roswintiarti
Remote Sensing Technology and Data Center
Indonesian National Institute of Aeronautics and Space (LAPAN)

Presented at The 1st GOFC-GOLD Fire Inter-Regional Network Meeting, the side event of the 5th International Wildland Fire Conference, Sun City, South Africa, 9-13 May 2011
• Introduction
• Remotely-sensed Fire Danger Rating System (FDRS) for early warning
• Remotely-sensed fire hotspot for monitoring
• Development of remotely-sensed burnt area (BA) mapping
• Closing remarks
Introduction

ENSO vs Fire Hotspot

El Niño/Southern Oscillation (ENSO) event was considered as one of significant aggravating factors behind the rise in temperatures and consequent drought in Southeast Asia during major wildfire and haze in the past years.

![MODIS Rapid Response Active Fire Detections for 2009](image)

![ENSO Index vs Time Period](image)

![Rainfall vs No. of Hotspot in Indonesia (Lag-0)](image)
- Riau province has two peaks of fire season, i.e. **Feb-Mar** and **Jul-Aug**.
- Fire mostly occurred in **peatland** area.

GR: Grassland; **OFS**: Open Forest/Slash
CF: Closed Forest; **NF**: Non-Forest
Rainfall vs Fire Hotspot vs Fuel Types in South Sumatera Province

- South Sumatera province has one peak of fire season, i.e. Sep-Oct.
- Fire mostly occurred in peatland area.

GR: Grassland; OFS: Open Forest/Slash; CF: Closed Forest; NF: Non-Forest
Central Kalimantan province has one peak of fire season, i.e. Aug-Oct.

Fire mostly occurred in peatland area.

GR: Grassland; OFS: Open Forest/Slash
CF: Closed Forest; NF: Non-Forest
East Kalimantan province has two peaks of fire season, i.e. Feb-Mar and Sep-Oct.

Fire mostly occurred in peatland area.
Fire Danger Rating System (FDRS) for early warning

Canadian Fire Weather Index (FWI) System

Inputs
- Temperature
- Relative humidity
- Wind speed
- Rainfall

Fuel Moisture Codes
- Fine Fuel Moisture Content (FFMC)
- Duff Moisture Code (DMC)
- Drought Code (DC)

Fuel Behaviour Indices
- Initial Spread Index (ISI)
- Buildup Index (BUI)

Fire Weather Index (FWI)
Interpretation of FFMC

Ignition studies compared against hotspot occurrence. 78% of hotspots occurred when FFMC > 81, but this represented only 20% of all days.

<table>
<thead>
<tr>
<th>Ignition potential</th>
<th>FFMC</th>
<th>Proportion of an average year<sup>a</sup></th>
<th>Proportion of fire occurrence<sup>b</sup></th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–72</td>
<td>0.62</td>
<td>0.10</td>
<td>Low probability of fire starts</td>
</tr>
<tr>
<td>Moderate</td>
<td>73–77</td>
<td>0.08</td>
<td>0.04</td>
<td>Moderate probability of fire starts in areas of local dryness</td>
</tr>
<tr>
<td>High</td>
<td>78–82</td>
<td>0.16</td>
<td>0.13</td>
<td>Cured grass fuels becoming easily ignitable; high probability of fire starts</td>
</tr>
<tr>
<td>Extreme</td>
<td>83+</td>
<td>0.13</td>
<td>0.73</td>
<td>Cured grass fuels highly flammable; very high probability of fire starts</td>
</tr>
</tbody>
</table>
Interpretation of DC

Interpretive guidelines based on days without rain required to cross DC threshold.

<table>
<thead>
<tr>
<th>Smoke potential</th>
<th>DC</th>
<th>Drying days before drought</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td><140</td>
<td>>30</td>
<td>Typical wet-season conditions. More than 30 dry days until DC reaches threshold. Severe haze periods unlikely.</td>
</tr>
<tr>
<td>Moderate</td>
<td>140–260</td>
<td>16–30</td>
<td>Normal mid-dry-season conditions. Between 15 and 30 dry days until DC reaches threshold. Burning should be regulated and monitored as usual.</td>
</tr>
<tr>
<td>High</td>
<td>260–350</td>
<td>6–15</td>
<td>Normal dry-season peak conditions. Between 5 and 15 dry days until DC reaches threshold. All burning in peatlands should be restricted. Weather forecasts and seasonal rainfall assessments should be monitored closely for signs of an extended dry season.</td>
</tr>
<tr>
<td>Extreme</td>
<td>>350</td>
<td><6</td>
<td>Approaching disaster-level drought conditions. Fewer than 6 dry days until DC reaches threshold, at which point severe haze is highly likely. Complete burning restriction should be enforced.</td>
</tr>
</tbody>
</table>
Calibrating ISI for Difficulty of Control for Grass

- Based on fire intensity interpretation of the ISI, for locally measured fuel load of 1.8 kg/m2 and a cured level of 65%.
- ISI > 6 considered extreme in SE Asia, compared to ISI > 15 in Canada.

<table>
<thead>
<tr>
<th>Difficulty of control</th>
<th>Estimated head fire intensity in grasslands (kW/m)a</th>
<th>ISI</th>
<th>Fire rate of spread (m/min)</th>
<th>Proportion of an average yearb</th>
<th>Fire suppression interpretationc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>0–250</td>
<td>0–1</td>
<td>0–0.5</td>
<td>0.75</td>
<td>Low fire intensity in grasslands. Fire will spread slowly or be self-extinguishing. Grassland fires can be successfully controlled using hand tools.</td>
</tr>
<tr>
<td>Moderate</td>
<td>250–1250</td>
<td>2–3</td>
<td>0.6–2.3</td>
<td>0.23</td>
<td>Moderate fire intensity in grasslands. Hand tools will be effective along the fire’s flanks, but water under pressure (pumps, hose) may be required to suppress the head fire in grasslands.</td>
</tr>
<tr>
<td>High</td>
<td>1250–2500</td>
<td>4–5</td>
<td>2.4–4.6</td>
<td>0.02</td>
<td>High fire intensity in grasslands. Direct attack at the fire’s head will require water under pressure, and mechanized equipment may be required to build control lines (e.g., bulldozer).</td>
</tr>
<tr>
<td>Extreme</td>
<td>2500+</td>
<td>6+</td>
<td>4.7+</td>
<td><0.01</td>
<td>Very high fire intensity in grasslands. Fire control will require construction of control lines by mechanized equipment and water under pressure. Indirect attack by back-burning between control lines and the fire may be required.</td>
</tr>
</tbody>
</table>
Development of Remotely-sensed FDRS for Western Indonesia

Motivation:

- The number of weather stations over Indonesia are still very limited.
- The distributions of these weather stations are sparse.
- The local scales (provincial/district scales) of FDR information is often needed by the local government.
- The use of satellite remote sensing data becomes the best alternative:
 - Advantages:
 - Provide comprehensive and multi-temporal coverage of large areas in real-time and at frequent intervals, mapping at a regular spatial resolution, and cost-effective.
 - Limitations:
 - Do not directly estimate the meteorological parameters, data processing is more complex, and clouds often cover land observation.
NOAA/AVHRR-based Inputs

TXLAPS
- Wind speed

Qmorph or TRMM
- Rainfall

DEM
- Elevation
- Latitude

NOAA/AVHRR
- Land Surface Temperature
- Air Temperature
- Relative Humidity

FWI System
- Fine Fuel Moisture Content (FFMC)
- Drought Code (DC)
- Initial Spread Index (ISI)
- Fire Weather Index (FWI)

Land Use: Soil, Vegetation, Water

Note:
TXLAPS: Tropical eXtended Area Prediction System (BoM, Australia) – 00:00 UTC
Qmorph: (NOAA) – 06:00 UTC to 05:00 UTC
TRMM: Tropical Rainfall Measuring Mission (NASA and JAXA) – 06:00 UTC to 05:00 UTC
DEM: Digital Elevation Model (SRTM 90m)
NOAA/AVHRR: National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer - 08:00 UTC and 11:00 UTC
MODIS-based Inputs

Notes:
- MODIS: Moderate Resolution Imaging Spectroradiometer
- T_b: Temperature brightness
- EVI: Enhanced Vegetation Index
- NDVI: Normalized Difference Vegetation Index
Data Grid (2.5 km x 2.5 km)
FFMC and DC during ENSO 2006 (1 Oct and 5 Oct 2006)
FFMC and DC during ENSO 2006 (10 Oct and 15 Oct 2006)
Hotspots and Haze during ENSO 2006 in Sumatera and Kalimantan

8 Oct 2006

12 Oct 2006
Example of remote sensing-based FDRS (11 Feb 2011)
IndoFire Map Service

The FireWatch Indonesia Project is a collaborative project between Indonesia’s Ministry of Forestry, the Institute of Aeronautics and Space LAPAN and Ministry of Environment, and the Australian Government through AusAID and the Western Australian Government Department Landgate.

Based on Landgate’s Firewatch System for Australia, the project has designed, built and installed a fire monitoring system covering the whole of Indonesia to enable the generation of valuable fire monitoring information to effectively fight fires. This information will enable early detection of fires leading to their suppression and minimising the spread of fires into Indonesia’s forest and peatland habitats.

It will generate valuable fire monitoring information for the whole of Indonesia including near-real time monitoring of active fires using the MODIS satellite sensor on board the Terra and Aqua satellites. It will provide access to burnt area mapping datasets developed by Ministry of Forestry and enable Time Series Analysis of hot spots overlaid with other mapping information to identify the origin and track the spread of fires. The ability to access this information will assist in the development of strategy and policy to reduce the incidence and severity of fires.

FireWatch Indonesia delivers essential fire monitoring information via a web based data delivery system called IndoFire. The system will provide free and open access to all stakeholder groups including public and private sector agencies at all levels. IndoFire is being designed to integrate with Indonesia’s developing Forest Monitoring Systems (FRIS).

To access IndoFire please click on the links below.

Indofire Map Service - Server 1 at LAPAN
Indofire Map Service - Server 2 at Ministry of Forestry
Indofire Map Service - Server 3 at Landgate Perth
Fire hotspot monitoring (11 Feb 2011)
Hotspot in Riau Province (11 Feb 2011)

No. of fire hotspot (11 Feb 2011):
Sumatera: 425
Riau Province: 189
Development of remotely-sensed burnt area (BA) mapping using SPOT-4 data

- **SPOT-4 data:**
 - Band XI1: 0.50-0.59 µm (GREEN)
 - Band XI2: 0.61-0.68 µm (RED)
 - Band XI3: 0.79-0.89 µm (NIR)
 - Band XI4: 1.53-1.75 µm (SWIR)

- **Normalized Burn Ratio (NBR):**
 \[\text{NBR} = \frac{(\text{NIR} - \text{SWIR})}{(\text{NIR} + \text{SWIR})} \]
 \[\Delta \text{NBR} = \text{NBR preFIRE} - \text{NBR postFIRE} \]

- **Normalized Difference Vegetation Index (NDVI):**
 \[\text{NDVI} = \frac{(\text{NIR} - \text{RED})}{(\text{NIR} + \text{RED})} \]
 \[\Delta \text{NDVI} = \text{NDVI preFIRE} - \text{NDVI postFIRE} \]
BA mapping based on NBR method

Result FHS – BA Mapping Using SPOT 4

Based on Method: Normalized Burn Ratio (NBR)
BA mapping based on NDVI method

Result FHS – BA Mapping Using SPOT 4

Based on Method: Normalized Difference Vegetation Index (NDVI)

28/01/09 – 03/07/09

: Burn Area
: Non - Burn Area
BA mapping based on visual interpretation

Result FHS – BA Mapping Using SPOT 4

Based on Method: Visual Interpretation and Process Vector Digitations

SPOT 4 DISPLAY COLOR COMPOSIT RGB: 412
BA mapping based on NBR, NDVI, and visual interpretation

Result Comparison Method FHS – BA Mapping Using SPOT 4

NBR vs. NDVI vs. Visual Interpretation and Process Vector Digitations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (km²)</td>
<td>116.2</td>
<td>148.1</td>
<td>134.2</td>
</tr>
<tr>
<td>Intersect area</td>
<td>(93.65/134.2) x 100% = 69.78%</td>
<td>(94.65/134.2) x 100% = 70.52%</td>
<td>-</td>
</tr>
</tbody>
</table>

NBR Jan – Nov 2009
NDVI Jan – Nov 2009
Visual Interpretation Jan – Nov 2009

: Burn Area
Closing remarks

- FDRS and fire hotspot have been done operationally for years in Indonesia. Unfortunately, there are still lack of validation for this information.

- Efforts for algorithm refinements:
 - Refinement of fire hotspots algorithm:
 - will be done by JAXA under “JST-JICA WildFire Carbon Management in Peat Forest in Indonesia” using a statistical method
 - proposed be implemented in LAPAN in 2011.
Closing remarks

- Efforts for algorithm refinements (*cont.*):
 - Refinement of remotely-sensed FDRS algorithm:
 - will be conducted through cooperation between JAXA, LAPAN, and Malaysian Meteorological Department (MMD) by determining the suitable empirical parameters.
 - proposed to be done in 2011
 - Methods and results of burnt area mapping from SPOT-4 data need to be compared with those from other satellite remote sensing high-resolution data.
Thank You for Your Attention